本书主要对大数据的理论基础进行了介绍,并对大数据框架包含的内容进行了详细讲解。具体内容包括:对Python基础知识的介绍,主要是在大数据的交通流预测中所能用到的Python基础知识;对大数据所包括的内容及基础理论知识的讲解;数据挖掘的研究与分析,对交通流大数据的基础数据的处理与分析;基于Python的机器学习模型的基础理论知识的介绍、交通流和驾驶行为及意图分析;基于Python的深度学习的理论讲解与分析,并运用深度学习模型对交通流进行预测等。 本书可供交通运输、交通工程、车辆工程、计算机等领域的技术人员、编程人员阅读,也可供相关专业的师生学习参考。
近年来,随着大数据的引入和人工智能的发展,交通领域在大数据和人工智能的影响下不断发展,追求更快、更准确、更智能化的研究越来越迫切。驾驶行为及意图的识别、交通流的预测、交通规划等交通领域的更新内容都需要大数据和人工智能的支撑。本书介绍了大数据的框架和基本内容、特点及原理等,从数据的获取到深度学习,讲解的内容由浅入深,并通过Python编程实现数据获取和算法原理说明,使读者容易理解和掌握。 本书的具体研究内容如下。 ① 大数据概述:大数据的基本理论知识,大数据的特征、分类、框架结构等。 ② Python基础知识:各种模块的讲解,并配以案例实现。 ③ 机器学习模式识别:机器学习的类型,机器学习的基础数学知识,树和随机森林算法,KNN 算法,贝叶斯理论,支持向量机等模型和原理,以及具体的Python代码实现。 ④ 深度学习基础及应用:深度学习的微积分基础、线性代数基础、案例详解、深度学习框架以及硬件基础、深度学习的驾驶意图应用等。 ⑤ 深度学习的交通流预测研究:交通流理论基础、交通流统计分布特性的基本理论知识、交通流数据预处理等。 本书的出版得到了山东省自然科学基金面上项目(ZR2019MEE072)、教育部高等教育司“人因与工效学”产学合作协同育人项目(202101042014)、教育部人文社会科学研究规划基金(18YJAZH067)、山东省自然科学基金面上项目(ZR2020MG021)、山东省泰山学者专项(ts201712054)、国家自然科学基金面上项目(5217052865)、工业流体节能与污染控制教育部重点实验室项目(背景噪声下小波包处理技术的深度学习声纹识别研究)等资助。在此一并表示感谢。 最后,还要衷心感谢本书引用的参考资料的所有作者。由于笔者水平有限,书中难免有疏漏和不足之处,恳请读者批评指正。 著者
第1 章 绪论001 1.1 大数据概述002 1.2 Python 概述003 1.3 交通运输大数据概述004 第2 章 Python 基础知识007 2.1 变量和简单数据类型008 2.2 Python 语法基础010 2.3 数据可视化020 2.4 数据的统计学特征025 2.5 代数和符号运算问题028 2.6 基本数学运算030 2.7 不同类型的数字031 2.8 Pandas 和NumPy 模块032 第3 章 大数据基础043 3.1 大数据044 3.2 Hadoop 大数据平台046 3.3 大数据与人工智能050 3.4 探索性数据分析051 3.5 相关分析和回归分析054 3.6 降维数据分析056 第4 章 机器学习模式识别065 4.1 人工智能、机器学习和深度学习关系066 4.2 机器学习基础068 4.3 机器学习中的参数及拟合问题071 4.4 矩阵基本知识072 4.5 树和随机森林算法076 4.6 KNN 算法078 4.7 贝叶斯理论078 4.8 支持向量机080 4.9 神经网络085 第5 章 深度学习基础及应用101 5.1 深度学习中的微积分基础102 5.2 深度学习的线性代数基础106 5.3 基于Python 的神经网络案例算法详解107 5.4 深度学习框架113 5.5 深度学习的硬件基础117 5.6 卷积神经网络算法详解118 5.7 循环神经网络和长短期记忆网络125 5.8 基于LSTM 的驾驶意图识别130 第6 章 深度学习的交通流预测研究139 6.1 交通流理论基础140 6.2 交通流的统计分布特性142 6.3 交通流数据预处理144 6.4 交通信息获取技术146 6.5 宏观交通流模型及微观交通流模型147 6.6 基于深度学习的交通流预测149 参考文献155
2018 © 化学工业出版社有限公司. ALL Rights Reserved. 京ICP备12046843号-7 | 京公网安备 11010102000557号 | 网络出版服务许可证 | 出版物经营许可证副本 | 出版物营业执照副本
ISBN:978-7-122-39983-0
语种:汉文
开本:16
出版时间:2022-04-01
装帧:平
页数:158